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Abstract. Quantum fluctuations of the signal field are shown to induce packed arrays of cavity solitons
in a degenerate optical parametric oscillator above threshold in the limit of large pump finesse relative
to the signal finesse. The cavity solitons in the array are formed by locked domain walls, and lead to a
highly correlated quantum structure. The effect of the quantum fluctuations is non-trivial since the arrays
of cavity solitons have a far less stable than other stable solutions and disappear with decreasing pump
finesse. The transition from disorder to order due to quantum noise is also discussed.

PACS. 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity,
and optical spatio-temporal dynamics – 42.50.Lc Quantum fluctuations, quantum noise, and quantum
jumps – 02.50.Ey Stochastic processes

1 Introduction

Spatial structures in extended nonlinear optical devices
can display important quantum features. Quantum images
in degenerate optical parametric oscillators (DOPO) show
quadrature squeezing in the near field [1,2], and Einstein-
Podolsky-Rosen (EPR) correlations in the far field [3].
These effects are due to the generation of entangled pho-
tons in the parametric down conversion process within the
optical cavity. For a review of these effects see [4,5].

While deterministic spatial structures are common-
place in many branches of science like hydrodynamics,
morphogenesis, biological populations, extended chemical
reactions etc., the coupling of quantum fluctuations and
nonlinear spatial structures is inherent of optics where
quantum noise has macroscopic effects even at room tem-
perature. Quantum images are noise driven precursors of
the spatial patterns observed above threshold but are in-
duced by quantum fluctuations in photonic devices such
as the DOPO, the OPO [6], Kerr cavities [7], and in in-
tracavity second harmonic generation [8]. It is the aim
of this paper to present a new kind of spatial structure
induced by quantum fluctuations: noisy arrays of cavity
solitons formed by locked domain walls. These structures
are shown to exist in a DOPO above threshold in the limit
of high pump finesse with respect to signal finesse. They
differ from other kinds of quantum structure in that they
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(i) are induced but not sustained by quantum fluctuations,
(ii) are not associated with any pattern formation mecha-
nism and (iii) their average size increases with increasing
ratio of pump to signal finesse. Arrays of cavity solitons are
very weak when compared to other stable solutions such
as the single cavity soliton and the homogeneous state and
yet such arrays are the asymptotic states selected by the
quantum noise.

The paper is organised as follows. In Section 2 we
discuss the quantum Langevin model used to describe
quantum fluctuations of the pump and signal fields above
threshold in a DOPO. In particular we show that in the
Wigner representation signal fluctuations dominate in the
limit of high pump finesse, and adopt a model recently
introduced to describe macroscopic quantum fluctuations
in DOPO [10]. Section 3 contains a short discussion on
deterministic spatial solutions (including locked domain
walls, cavity solitons and spatial chaos) and their stabil-
ity. The results of the quantum stochastic simulations are
presented in Section 4, where the asymptotic arrays of
spatial solitons induced by quantum fluctuations are de-
scribed and characterised in the near and the far fields.
Section 5 contains a discussion about noise induced tran-
sitions from disordered to ordered spatial structures and
about future research directions.

2 Quantum Langevin equations

We consider a χ(2) material, contained in a single port
cavity with plane mirrors, under the action of a pump field
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of frequency 2ω. Degenerate parametric down conversion
in the medium generates a signal field at frequency ω.
The intracavity pump and signal fields are described by
the quantum operators A0(x, t) and A1(x, t), respectively,
where x is the transverse coordinate. We restrict ourselves
here to the one dimensional (1D) DOPO case but many
of our results can be immediately generalised to the entire
transverse plane.

In the interaction picture the Hamiltonian is given
by [2]

H = Hf + Hint + Hext (1)

where

Hf = −�
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is the Hamiltonian of the nonlinear interaction, and
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contains the external driving pump. In equation (2) a0 =
c/(2kz) and a1 = 2a0 are characteristic diffraction coef-
ficients with c the speed of light and kz the longitudinal
wave vector of the pump wave, while ∂2

xx is the second par-
tial derivative with respect to space, describing diffraction
in the paraxial approximation. Note that we are working
at resonance for both the pump and signal field which is
the most common operation for realistic cw OPO. Our
results, however, can be easily generalised to include de-
tunings from resonance. In equation (3) g is the coupling
parameter related to the medium nonlinearity, while in
equation (4) Ein is the (scaled) plane wave input field am-
plitude.

The irreversible part of the dynamics is introduced
in the Liouvillian terms of the master equation for the
density matrix [2]. The master equation is then turned
into a set of stochastic differential equations for c-number
fields α0(x, t) and α1(x, t) corresponding to the operators
A0(x, t) and A1(x, t), in the Wigner representation [1,2,4].
The procedure introduced in [2,9] by using functional
derivatives, has since been repeated for many quantum
systems other than the DOPO and we do not repeat it
here. The final nonlinear Langevin equations truncated at
third order in the Wigner representation and at resonance
are [9],
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is the ratio of the pump photon decay rate γ0 (transmit-
tivity T0) to that of the signal field γ1 (T1) and also the
ratio of the signal to pump finesse that in the small trans-
mittance limit reduce to Fi = π/Ti with i = 0, 1; time
has been renormalised via τ = γ1 t; all the fields (includ-
ing Ein) have been rescaled by (γ1

√
ld)/g; space has been

renormalised by
√

a1/γ1; nth is the number of pump pho-
tons necessary to reach the signal generation threshold in
the diffraction length ld, i.e.

nth =
γ2
1
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γ2
1

g2

√
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and finally the variables ξ0 and ξ1 are stochastic Gaussian
processes with zero average, and correlation,

〈ξi(x, τ) ξ∗i (x′, τ ′)〉 =
1
2
δ(x − x′)δ(τ − τ ′) (9)

with i = 0, 1. The noise terms are interpreted as vacuum
quantum noise entering through the partially transmitting
mirror.

Equations (5, 6) are in a form suitable for the fluctua-
tion-dissipation analysis. One can immediately see that
the signal field fluctuates and dissipates at a higher rate
than the pump in the limit of small Γ . This is exactly the
limit where arrays of cavity solitons induced by quantum
fluctuations, as described below, arise. The reduction of
the amplitude of the pump fluctuations with respect to
the signal fluctuations when Γ → 0 is in agreement with
two simple observations. The first one is that for small Γ
the pump intracavity amplitude is on average much larger
than that of the signal and is then less affected by the
quantum noise entering through the mirror as well as its
associated losses. Second, cavity solitons in the DOPO are
due to the locking of domain walls in the signal field so
for them to be formed and erased by quantum fluctua-
tions they require a limit where signal fluctuations are
dominant.

Before we proceed, we introduce a further normalisa-
tion of the fields to recast equations (5, 6) into a more fa-
miliar form of the kind introduced in [9]. We renormalise
the signal field to α̂1 = α1/

√
2Γ . After dropping the hat,

the Langevin equations are given by:
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These equations clearly show that in the limit of small
Γ the fluctuations of the pump field lose relevance while
those of the signal field increase in amplitude. In this
regime of large signal fluctuations and small pump fluctu-
ations, Zambrini et al. [10] have shown that the quantum
behaviour of the system in the Wigner representation is
suitably described by

∂τA0 = Γ
(−A0 + E − α2

1

)
+

i
2
∂2

xxA0 (12)

∂τα1 = −α1 + A0α
∗
1 + i∂2

xxα1 +
√

1
nthΓ

ξ1 (13)



I. Rabbiosi et al.: A new kind of quantum structure 455

where A0 is the “classical” pump field. In equations (12,
13) we have first neglected pump fluctuations since they
are unimportant when compared with the fluctuations of
α2

1 and then considered the pump as a classical field [10].
Equations (12, 13) are the quantum stochastic model used
in this paper to simulate the effect of quantum fluctuations
in a DOPO system above threshold and with high pump
cavity finesse. Equations (12, 13) are integrated numeri-
cally by using a Milshtein’s method as described in [19].

Note that all the results of this paper are presented
for the output signal field in the original units which is re-
lated to the intracavity field α1 through the input-output
relation

αout
1 =

√
4Γnth α1 − ξ1. (14)

3 Domain walls, cavity solitons and spatial
chaos in DOPO

In order to understand the nature of the solutions induced
by the quantum fluctuations, we review the properties
and the stability of the steady states of the determinis-
tic equations corresponding to the removal of the fluc-
tuations in equation (13). The spatially extended DOPO
above threshold is a peculiar spatio-temporal system since
it admits an infinite number of stable steady state solu-
tions. In statistical physics this feature is typical of spin-
glass systems [11].

The deterministic DOPO admits two stable homoge-
neous steady state solutions As

0 = 1, As
1± = ±√

E − 1
and an unstable one As

0 = E, As
1 = 0 above the threshold

for signal generation (E > 1). It is important to note that
there are no modulational instabilities of the homogeneous
solutions for any value of E and Γ [12]. The 1D DOPO
model admits also domain wall (DW) solutions [13,14] cor-
responding to heteroclinic trajectories i.e. trajectories in
the phase space that connect the two stable homogeneous
states asymptotically for x → ±∞ by passing through the
unstable solution As

1 = 0, which defines the core of the
defect (Ising wall).

In a DOPO at resonance, DW have oscillatory tails
and pairs of DW can lock at fixed incommensurate dis-
tances sj (j = 0, 1, 2, ...). They form an entire family of
stationary stable solutions. Distances sj are measured be-
tween the centers of two adjacent DW and can be uniquely
identified by the number j of oscillations occurring be-
tween two DW. For increasing DW distances, the modu-
lus of the largest stability eigenvalue of the corresponding
locked state quickly decreases with the order j and even-
tually DW become independent of each other at large dis-
tances [14]. Locked DW correspond to homoclinic (rather
than heteroclinic) trajectories in phase space and we speak
of localized structures, or cavity solitons (CS), when the
locking distance is small [14]. In this case the trajectory
originates from one fixed point and returns back to it, re-
maining substantially far from the opposite equilibrium
point. The homoclinic orbits may pass very close to the
origin (where both real and imaginary parts of the sig-
nal field are equal to zero) but never through it. The real
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Fig. 1. Largest stability eigenvalue λ for a family of homoclinic
solutions corresponding to arrays formed by one to seven cavity
solitons.
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Fig. 2. The wave vector of arrays of cavity solitons k0 versus Γ
for several values of the input pump E and no noise.

part of A1, however, must vanish twice and we identify
the core of a defect with Re(A1) = 0. Note that for any
generic CS As

1, the negative −As
1 is also a solution.

A second family of stable homoclinic solutions corre-
sponds to arrays of spatial solitons where a number of
soliton peaks are found before returning to the initial ho-
mogeneous state. In Figure 1 we present the stability of
a collection of these homoclinic solutions starting from a
single peak and reaching 7 peaks. The largest (negative)
stability eigenvalue of the solutions is plotted versus the
number of soliton peaks in the solution [15]. The steady
state solutions and their stability are determined using the
numerical methods described in [14,16]. One can easily see
from Figure 1 that the solution grows weaker with increas-
ing number of soliton peaks, the single soliton peak being
the most stable of all. Periodic arrays of spatial solitons
are characterised by the wave vector k0 = π/s0, where s0

is the size of the single soliton peak. In Figure 2 we present
the variation of k0 with Γ for several values of the input
pump E above threshold. For small values of Γ the wave
vector k decreases while the soliton peak increases in size.

A generic stationary solution As
1 consists of a trajec-

tory orbiting around the stable homogeneous states and
whose real part vanishes at an even number of points
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Fig. 3. Typical asymptotic distribution of the real part of
the signal field in the absence of fluctuations for E = 4 and
Γ = 0.2 (top panel). The spatial power spectrum averaged
over many realisations starting from the unstable zero state
(bottom panel).

[x1, ..., x2n] since we are using periodic boundary con-
ditions. The defect cores are located at positions xn =
xn−1 +sj , with n, j integers, giving rise to a huge number
of possible stable distributions of defects. Note that defect
distributions presenting a significant degree of periodicity
(where the possible periods are twice the distances sj), are
a very small fraction of the total number. Different final
states with arbitrary numbers of defects can be reached by
starting from the unstable (zero signal) homogeneous so-
lution with an added random perturbation. The resulting
stable 1D structures contain, on average, a wide range of
spatial wavelengths giving rise to a continuum background
in Fourier space, enhanced by the fact that separations sj

are incommensurate with each other. There is an analogy
between this behaviour and temporal chaos, since when
∂t = 0, equations (12, 13) can be considered as a dy-
namical system with the variable x assuming the role of
time. For this reason these aperiodic (disordered) stable
structures have been labelled “spatial chaos” by previous
authors [17,18]. Figure 3 shows a typical example of a de-
terministic, stable and disordered solution and its spatial
power spectrum. Solutions of this kind are generic in the
parameter space (E, Γ ).

4 Arrays of cavity solitons induced
by quantum fluctuations

In this section we study the effect of quantum fluctuations
on the distributions of DW and defects in the signal field.
In particular we identify a clear change of behaviour in
the spatial spectrum decreasing the ratio Γ between the
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Fig. 4. (a) Temporal evolution driven by quantum fluctua-
tions of the real part of the output signal field for E = 1.5
and Γ = 0.02. Arrays of cavity solitons are clearly visible after
the transient has ended. (b) The Fourier spectrum of the spa-
tial auto-correlation function C[Re(A1)], averaged over time
after the equilibrium state has been reached. k0 corresponds
to the wave vector of arrays of cavity solitons and kLS to the
largest eigenvalue of the linear stability analysis of the stable
homogeneous solution, away from k = 0.

cavity finesse of pump and signal fields respectively. Fig-
ure 4a shows the 1D evolution of the signal field under
the action of quantum fluctuations for Γ = 0.02, E = 1.5
and nth = 1000. Local fluctuations have been filtered out
by introducing a threshold at Re(A1) = 0 so that the
dark (white) regions in Figure 4a represent positive (neg-
ative) values of Re(A1). Moreover, we eliminate those de-
fects pairs whose separation is less than a definite critical
distance since they are doomed to disappear [20]. After
a transient whose duration increases exponentially with
increasing nth, we reach a stationary equilibrium regime
where the average number of defects remains constant.
This corresponds to a balance between the rates of ap-
pearance and disappearance of pairs of DW. We stress
that all quantities considered below are evaluated at equi-
librium.

For low Γ , a large number of locked cavity solitons
are clearly visible in the near field. They form arrays that
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Fig. 5. Duration of the transient tr before the equilib-
rium regime is reached versus Γnth on a logarithmic scale
for E = 2.6.

jitter under the action of the fluctuations. The lengths of
the arrays are an arbitrary multiple of the soliton size s0.
The average length of the arrays increases with increasing
ratio of pump to signal finesse. For example, in Figure 4a
this average length is larger than the transverse simula-
tion size. The presence of arrays of cavity solitons is re-
flected in the far field where a huge peak at k0 appears.
The power spectrum shown in Figure 4b is nothing else
than the Fourier transform of the spatial auto-correlation
function C[g(x, t)] =

∫ +∞
−∞ h(x+x′, t)h∗(x′, t)dx′ averaged

over time. In our case h = Re(A1). The average size of the
arrays of cavity solitons is given by the inverse of the decay
rate of the averaged spatial correlation function. A large
peak at k0 in the power spectrum signals the presence of
large spatial correlations at distances of the order of s0.

These arrays should not be confused with patterns
above a modulational instability since they are formed by
progressive locking of localised structures and not by the
instability of a given wave vector. The phenomenon de-
scribed here is analogous to the noise induced suppression
of spatial chaos presented in [20] but is now entirely due to
quantum fluctuations. Arrays of cavity solitons in the sig-
nal intensity in the limit of small Γ and the corresponding
off-axis peak in the far field are a new “quantum struc-
ture” in that they are induced by quantum noise after long
transients. Note that without the quantum fluctuations
the far field is broad band and displays no correlations at
any particular wave vector.

One of the main aims of this paper is to show that
realistic quantum fluctuations can induce arrays of cav-
ity solitons in a 1D configuration of a DOPO. For this
reason Figure 5 shows the duration of the transient before
reaching the equilibrium regime against nthΓ , a parameter
that measures the inverse of the fluctuation strength and
depends on the pump wavelength, the diffraction in the
cavity, the material nonlinearity and the finesse of both
cavities. It is important to note that Γ cannot be pushed
below say 10−3 to maintain the validity of the mean field
limit [21] while large values of nth can lead to undesirably
long transients. Staying above but close to the threshold
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0

1.5

k 0,k
LS

Fig. 6. Wave vectors k0 (solid line) of the arrays of cavity soli-
tons and kLS (dashed line) corresponding to the largest eigen-
value of the linear stability analysis of the stable homogeneous
solution away from k = 0 versus Γ for E = 1.5.

of signal generation also helps to achieve optimal balance
among the parameters and for this reason we have chosen
to work within the range of 1.5 ≤ E ≤ 3.

It is important to demonstrate that the quantum struc-
ture described here is fundamentally different from the
quantum images observed around a modulational insta-
bility as described for DOPO in [2,9], for OPO in [6],
for Kerr cavities in [7], and for intracavity second har-
monic generation in [8]. In all these cases, the quantum
image is associated with a noisy precursor of the pat-
tern which forms above a modulational instability. This
means that if we switch the noise off after the formation
of the quantum image, the far field peak at the critical
wave vector kc of pattern formation above the modula-
tional threshold disappears. In the present case of arrays
of cavity solitons, instead, if we remove the noise after the
arrays have been induced by the quantum fluctuations, the
arrays will survive indefinitely since they are one of many
stable stationary-solutions of the system. In this respect it
is important to note that our arrays of cavity solitons are
induced but not sustained by quantum fluctuations. The
arrays of solitons described here are also quite different
from the periodic sequence of DW with a wave number
due to walk-off presented in [22]. Again, the structures
observed in [22] are sustained by noise while our arrays of
cavity solitons are not. Our noise induced structures are
also very different from stochastic distributions observed
in [23]. These are nothing else than noise sustained pre-
cursors above the signal generation threshold but below
a modulational instability of the homogeneous solution
obtained at resonance because of the peculiar choice of
the diffraction coefficients [24]. The wave number of the
stochastic distributions observed in [23] has been obtained
through the linear stability of the homogeneous solution
and has no relevance to the cavity soliton structures pre-
sented here. To elucidate this issue, we display in Figure 6
both wave vectors k0 of the arrays of cavity solitons, and
kLS corresponding to the largest eigenvalue of the linear
stability analysis of the stable homogeneous solution away
from k = 0. These two wave vectors have very different
sizes, very different physical origins and are not related to
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Fig. 7. Existence boundaries of stable multi-defect solutions
in the parameter space (µ, Γ ) for E = 3 when a bias µ is
added to (13). Shaded regions represent the existence limits for
upward-oriented single peak (right-shaded region enclosed by
solid lines) and 7 peak (left-shaded region enclosed by dashed
lines) solitonic solutions, as indicated by the arrows. The ex-
istence region for the two stable homogeneous states As

1± is
within the dotted-dashed vertical lines.

each other through a linear transformation. There is in-
deed no peak in the spatial Fourier spectrum of Figure 4b
corresponding to kLS.

The appearance of arrays of cavity solitons induced
by quantum fluctuations is nontrivial and is related to
the non-potential nature of our model. We note that un-
like e.g. quartic potential systems, the linear stability of
the stationary states does not provide useful information
on the relative stability of the solutions. A qualitative
criterion to establish the relative stability of the various
multi-defects solutions is to look for the loss of their sta-
bility when we add a bias to (13), in the form of a con-
stant real term µ, and consider equations (12, 13) without
noise. By increasing µ adiabatically we find the critical
value at which a given stable stationary state disappears.
In Figure 7 we plot in the parameter space (µ, Γ ) the
existence boundaries of the upward-oriented single-peak
(right-shaded region enclosed by solid lines) and seven-
peak (left-shaded region enclosed by dashed lines) soli-
tonic solutions, as indicated by the arrows. Note that the
existence limits of downward oriented solitonic solutions
(−As

1) are simply the mirror image with respect to µ = 0
of the diagrams for upward oriented ones (As

1). We also
note that for low Γ and on increasing |µ|, the first multi-
peak solutions to disappear are those with a large number
of peaks while the single-peak soliton is the last. Further-
more the stable homogeneous states As

1±(µ) survive up to
very large values of |µ| and are the last stable states to
disappear (dot-dashed vertical lines in Fig. 7).

This heuristic analysis suggests that the most stable
states in our system are the two equivalent states As

1±.
Arrays of cavity solitons in the presence of noise arise
as a symmetry-restoring equilibrium state and Re(A1) is
equally distributed on both sides of Re(A1) = 0.

Symmetry alone is not enough to explain why quantum
fluctuations select regular arrays of cavity solitons since
stable homogeneous solutions exist also for large Γ . A sim-
ple complementary argument is suggested in [20]. In the
limit of small Γ , local oscillations at the tails of the locked
DW have large amplitude [14]. Once a single peak cavity
soliton is excited by the fluctuations, the probability of
exciting another soliton peak in the vicinity of the first
one is spatially inhomogeneous due to the presence of the
oscillatory tails. In particular fluctuations much smaller
than that necessary to excite a single peak soliton from
a homogeneous background can excite a new peak in the
vicinity of the large amplitude oscillations of the soliton
tail. This was determined by finding the unstable single-
soliton solution which provides the critical magnitude of
such excitations. In the limit of small Γ the critical ampli-
tudes for erasing a soliton peak are larger than those for
its excitation as shown in [20], and so the equilibrium den-
sity of defects is large. Therefore the average separation
distance between defects is small and, since this cannot
be smaller than s0 (the characteristic size of a soliton),
arrays of solitons form.

The heuristic argument provided above explains the
critical role played by the parameter Γ in the stochastic
selection of the final solutions. In particular the condi-
tion of small Γ has a twofold relevance; it increases both
the role played by the signal noise and the size of the
local oscillations of the soliton tails. In agreement with
this argument, we observe for increasing Γ that the aver-
age size of the arrays of cavity solitons tends to decrease
and larger patches of homogeneous solutions progressively
appear. This means that the peak in the far field gradu-
ally decreases and eventually disappears on increasing Γ .
We note however that by increasing Γ the validity of the
quantum model (12, 13) becomes questionable since the
fluctuations of the pump field cannot be neglected any
longer [10]. If we use equations (10, 11) for increasing Γ ,
we observe arrays of solitons to progressively decrease in
size and finally to disappear well before Γ = 1 leaving the
dynamics to be dominated by domain walls performing
random walks [20].

5 Discussion and conclusion

We have shown that quantum fluctuations in the signal
field can induce arrays of cavity solitons in the output
of 1D DOPO. These structures are different from noise
sustained quantum images below a modulational instabil-
ity threshold. Arrays of cavity solitons are in fact stable
(yet very unlikely) solutions of the DOPO equations with-
out noise, are not associated with any unstable wave vec-
tor, and are induced but not sustained by quantum noise.
In particular we have provided important information for
their experimental observation. Noise induced arrays of
cavity solitons require small Γ , large 1D aspect ratios,
and proximity to the signal generation threshold if nth is
large.

Noise induced arrays of cavity solitons represent an un-
usual transition where noise, generally believed to increase
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disorder, replaces spatial broad band spectra of the deter-
ministic solutions with highly correlated periodic struc-
tures of cavity solitons corresponding to a large peak in
the Fourier spectrum. This unusual “disorder to order”
transition mediated by noise has been already discussed
in [20] where its differences from a stochastic resonance
phenomenon [25] have also been discussed.

Our analysis focused on the resonant case to avoid con-
fusion between the emergence of arrays of cavity solitons
due to quantum fluctuations and other structures caused
by modulational instabilities of homogeneous states. How-
ever, we find noise induced arrays of cavity solitons in de-
tuned DOPO whenever the homogeneous solutions As

1±
are stable and Γ is small. We are investigating regimes
where these noise induced structures arise close to a mod-
ulational instability for positive signal detunings or above
the threshold of pattern formation for negative detunings.
Furthermore it is possible to generalise noise induced ar-
rays of cavity solitons when the homogeneous states As

1±
have undergone a modulational instability as happens for
positive signal detunings. These results will be presented
elsewhere.

We are also working on the characterisation of quan-
tum features in noise induced arrays of cavity solitons.
Squeezing properties of the output fields [1,2] and EPR
correlations [3] observed in standard quantum images in
DOPO may be substantially modified in the case of noise
induced arrays of cavity solitons. Their effect on the quan-
tum features associated with the entanglement of twin
photons is presently under investigation.

We are also investigating the 2D case which is not a
straightforward generalisation of the 1D case as, for exam-
ple, in standard quantum images. In 2D, curvature effects
strongly affect the position and the interaction of cavity
solitons [14]. We expect noise to be less efficient in modi-
fying the overall output characteristics of the signal field
in 2D than in 1D. These results are however important in
determining the best experimental DOPO configuration
for the observation of the formation and correlations of
our new quantum structure formed by locked cavity soli-
tons.
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